Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
Front Pharmacol ; 15: 1379236, 2024.
Article in English | MEDLINE | ID: mdl-38659580

ABSTRACT

Introduction: Hypertrophic cardiomyopathy (HCM) is a leading cause of lethal arrhythmias in the young. Although the arrhythmic substrate has been hypothesised to be amenable to late Na+ block with ranolazine, the specific mechanisms are not fully understood. Therefore, this study aimed to investigate the substrate mechanisms of safety and antiarrhythmic efficacy of ranolazine in HCM. Methods: Computational models of human tissue and ventricles were used to simulate the electrophysiological behaviour of diseased HCM myocardium for variable degrees of repolarisation impairment, validated against in vitro and clinical recordings. S1-S2 pacing protocols were used to quantify arrhythmic risk in scenarios of (i) untreated HCM-remodelled myocardium and (ii) myocardium treated with 3µM, 6µM and 10µM ranolazine, for variable repolarisation heterogeneity sizes and pacing rates. ECGs were derived from biventricular simulations to identify ECG biomarkers linked to antiarrhythmic effects. Results: 10µM ranolazine given to models manifesting ventricular tachycardia (VT) at baseline led to a 40% reduction in number of VT episodes on pooled analysis of >40,000 re-entry inducibility simulations. Antiarrhythmic efficacy and safety were dependent on the degree of repolarisation impairment, with optimal benefit in models with maximum JTc interval <370 ms. Ranolazine increased risk of VT only in models with severe-extreme repolarisation impairment. Conclusion: Ranolazine efficacy and safety may be critically dependent upon the degree of repolarisation impairment in HCM. For moderate repolarisation impairment, reductions in refractoriness heterogeneity by ranolazine may prevent conduction blocks and re-entry. With severe-extreme disease substrates, reductions of the refractory period can increase re-entry sustainability.

2.
Cardiovasc Res ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646743

ABSTRACT

AIMS: Lethal arrhythmias in hypertrophic cardiomyopathy (HCM) are widely attributed to myocardial ischaemia and fibrosis. How these factors modulate arrhythmic risk remains largely unknown, especially as invasive mapping protocols are not routinely used in these patients. By leveraging multiscale digital-twin technologies, we aim to investigate ischaemic mechanisms of increased arrhythmic risk in HCM. METHODS AND RESULTS: Computational models of human HCM cardiomyocytes, tissue and ventricles were used to simulate outcomes of phase 1A acute myocardial ischaemia. Cellular response predictions were validated with patch-clamp studies of human HCM cardiomyocytes (n=12 cells, N=5 patients). Ventricular simulations were informed by typical distributions of subendocardial/transmural ischaemia as analysed in perfusion scans (N=28 patients). S1-S2 pacing protocols were used to quantify arrhythmic risk for scenarios in which regions of septal obstructive hypertrophy were affected by (i) ischaemia, (ii) ischaemia and impaired repolarisation, and (iii) ischaemia, impaired repolarisation, and diffuse fibrosis.HCM cardiomyocytes exhibited enhanced action potential and abnormal effective refractory period shortening to ischaemic insults. Analysis of c.a. 75,000 re-entry induction cases revealed that the abnormal HCM cellular response enabled establishment of arrhythmia at milder ischaemia than otherwise possible in healthy myocardium, due to larger refractoriness gradients that promoted conduction block. Arrhythmias were more easily sustained in transmural than subendocardial ischaemia. Mechanisms of ischaemia-fibrosis interaction were strongly electrophysiology dependent. Fibrosis enabled asymmetric re-entry patterns and break-up into sustained ventricular tachycardia. CONCLUSIONS: HCM ventricles exhibited an increased risk to non-sustained and sustained re-entry, largely dominated by an impaired cellular response and deleterious interactions with the diffuse fibrotic substrate.

3.
Med Image Anal ; 94: 103108, 2024 May.
Article in English | MEDLINE | ID: mdl-38447244

ABSTRACT

Cardiac in silico clinical trials can virtually assess the safety and efficacy of therapies using human-based modelling and simulation. These technologies can provide mechanistic explanations for clinically observed pathological behaviour. Designing virtual cohorts for in silico trials requires exploiting clinical data to capture the physiological variability in the human population. The clinical characterisation of ventricular activation and the Purkinje network is challenging, especially non-invasively. Our study aims to present a novel digital twinning pipeline that can efficiently generate and integrate Purkinje networks into human multiscale biventricular models based on subject-specific clinical 12-lead electrocardiogram and magnetic resonance recordings. Essential novel features of the pipeline are the human-based Purkinje network generation method, personalisation considering ECG R wave progression as well as QRS morphology, and translation from reduced-order Eikonal models to equivalent biophysically-detailed monodomain ones. We demonstrate ECG simulations in line with clinical data with clinical image-based multiscale models with Purkinje in four control subjects and two hypertrophic cardiomyopathy patients (simulated and clinical QRS complexes with Pearson's correlation coefficients > 0.7). Our methods also considered possible differences in the density of Purkinje myocardial junctions in the Eikonal-based inference as regional conduction velocities. These differences translated into regional coupling effects between Purkinje and myocardial models in the monodomain formulation. In summary, we demonstrate a digital twin pipeline enabling simulations yielding clinically consistent ECGs with clinical CMR image-based biventricular multiscale models, including personalised Purkinje in healthy and cardiac disease conditions.


Subject(s)
Magnetic Resonance Imaging , Purkinje Fibers , Humans , Purkinje Fibers/diagnostic imaging , Purkinje Fibers/anatomy & histology , Purkinje Fibers/physiology , Myocardium , Computer Simulation , Electrocardiography/methods
4.
Nature ; 626(8000): 859-863, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326609

ABSTRACT

Bacteria in the gastrointestinal tract produce amino acid bile acid amidates that can affect host-mediated metabolic processes1-6; however, the bacterial gene(s) responsible for their production remain unknown. Herein, we report that bile salt hydrolase (BSH) possesses dual functions in bile acid metabolism. Specifically, we identified a previously unknown role for BSH as an amine N-acyltransferase that conjugates amines to bile acids, thus forming bacterial bile acid amidates (BBAAs). To characterize this amine N-acyltransferase BSH activity, we used pharmacological inhibition of BSH, heterologous expression of bsh and mutants in Escherichia coli and bsh knockout and complementation in Bacteroides fragilis to demonstrate that BSH generates BBAAs. We further show in a human infant cohort that BBAA production is positively correlated with the colonization of bsh-expressing bacteria. Lastly, we report that in cell culture models, BBAAs activate host ligand-activated transcription factors including the pregnane X receptor and the aryl hydrocarbon receptor. These findings enhance our understanding of how gut bacteria, through the promiscuous actions of BSH, have a significant role in regulating the bile acid metabolic network.


Subject(s)
Acyltransferases , Amidohydrolases , Amines , Bile Acids and Salts , Biocatalysis , Gastrointestinal Microbiome , Humans , Acyltransferases/metabolism , Amidohydrolases/metabolism , Amines/chemistry , Amines/metabolism , Bacteroides fragilis/enzymology , Bacteroides fragilis/genetics , Bacteroides fragilis/metabolism , Bile Acids and Salts/chemistry , Bile Acids and Salts/metabolism , Cohort Studies , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Gastrointestinal Microbiome/physiology , Ligands , Pregnane X Receptor/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Transcription Factors/metabolism , Infant , Cell Culture Techniques
5.
Comput Biol Med ; 169: 107829, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38096763

ABSTRACT

BACKGROUND: Pseudonormal T waves may be detected on stress electrocardiograms (ECGs) in hypertrophic cardiomyopathy (HCM). Either myocardial ischaemia or purely exercise-induced changes have been hypothesised to contribute to this phenomenon, but the precise electrophysiological mechanisms remain unknown. METHODS: Computational models of human HCM ventricles (n = 20) with apical and asymmetric septal hypertrophy phenotypes with variable severities of repolarisation impairment were used to investigate the effects of acute myocardial ischaemia on ECGs with T wave inversions at baseline. Virtual 12-lead ECGs were derived from a total of 520 biventricular simulations, for cases with regionally ischaemic K+ accumulation in hypertrophied segments, global exercise-induced serum K+ increases, and/or increased pacing frequency, to analyse effects on ECG biomarkers including ST segments, T wave amplitudes, and QT intervals. RESULTS: Regional ischaemic K+ accumulation had a greater impact on T wave pseudonormalisation than exercise-induced serum K+ increases, due to larger reductions in repolarisation gradients. Increases in serum K+ and pacing rate partially corrected T waves in some anatomical and electrophysiological phenotypes. T wave morphology was more sensitive than ST segment elevation to regional K+ increases, suggesting that T wave pseudonormalisation may sometimes be an early, or the only, ECG feature of myocardial ischaemia in HCM. CONCLUSIONS: Ischaemia-induced T wave pseudonormalisation can occur on stress ECG testing in HCM before significant ST segment changes. Some anatomical and electrophysiological phenotypes may enable T wave pseudonormalisation due to exercise-induced increased serum K+ and pacing rate. Consideration of dynamic T wave abnormalities could improve the detection of myocardial ischaemia in HCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Myocardial Ischemia , Humans , Cardiomyopathy, Hypertrophic/diagnosis , Electrocardiography , Arrhythmias, Cardiac , Phenotype
6.
Article in English | MEDLINE | ID: mdl-37898625

ABSTRACT

BACKGROUND: The effects of ultraviolet (UV) filters in the aquatic environment have been well studied, but environmental exposures remain unclear and understudied. Consumer usage directly influences the amount of sunscreen products, and subsequently UV filters, potentially released into the environment. OBJECTIVE: To conduct a literature review of previous research into sunscreen application thickness, develop a questionnaire protocol designed to semi-quantify sunscreen usage by US consumers, and conduct a large-scale survey to determine a sunscreen application thickness (to face and body) that is more refined than conservative defaults. The United States Food & Drug Administration (US FDA) recommends a sunscreen application rate of 2 mg/cm2. This value is typically used as a worst-case assumption in environmental exposure assessments of UV filters. METHODS: Designed a novel approach to estimate lotion sunscreen application thickness using an online questionnaire protocol employing visual references and self-reported height and weight of the respondents. A literature review was also conducted to collect historical sunscreen usage. RESULTS: Over 9000 people were surveyed in the US, and after the dataset was refined, their sunscreen application thickness was estimated based on calculated body surface area and reported sunscreen amounts. The mean and median values for survey respondents are 3.00 and 1.78 mg/cm2, respectively, for facial application thickness and 1.52 and 1.35 mg/cm2, respectively, for body application thickness. Earlier research from 1985-2020 reported 36 of the 38 values are below the US FDA's recommended application thickness of 2 mg/cm2 (range 0.2-5 mg/cm2). IMPACT STATEMENT: This web-based survey is the first of its kind, designed specifically to quantify sunscreen application in a large and diverse set of consumers. This method provides a greater reach to larger populations thus enabling more granular data analysis and understanding. Exposure assessments of sunscreen ingredients typically use conservative parameters. These data can refine those assessments and allow for more informed and science-based risk management decisions.

7.
Int J Cardiovasc Imaging ; 39(10): 1979-1996, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37358707

ABSTRACT

Despite the progress made in risk stratification, sudden cardiac death and heart failure remain dreaded complications for hypertrophic cardiomyopathy (HCM) patients. Myocardial ischaemia is widely acknowledged as a contributor to cardiovascular events, but the assessment of ischaemia is not yet included in HCM clinical guidelines. This review aims to evaluate the HCM-specific pro-ischaemic mechanisms and the potential prognostic value of imaging for myocardial ischaemia in HCM. A literature review was performed using PubMed to identify studies with non-invasive imaging of ischaemia (cardiovascular magnetic resonance, echocardiography, and nuclear imaging) in HCM, prioritising studies published after the last major review in 2009. Other studies, including invasive ischaemia assessment and post-mortem histology, were also considered for mechanistic or prognostic relevance. Pro-ischaemic mechanisms in HCM reviewed included the effects of sarcomeric mutations, microvascular remodelling, hypertrophy, extravascular compressive forces and left ventricular outflow tract obstruction. The relationship between ischaemia and fibrosis was re-appraised by considering segment-wise analyses in multimodal imaging studies. The prognostic significance of myocardial ischaemia in HCM was evaluated using longitudinal studies with composite endpoints, and reports of ischaemia-arrhythmia associations were further considered. The high prevalence of ischaemia in HCM is explained by several micro- and macrostructural pathological features, alongside mutation-associated energetic impairment. Ischaemia on imaging identifies a subgroup of HCM patients at higher risk of adverse cardiovascular outcomes. Ischaemic HCM phenotypes are a high-risk subgroup associated with more advanced left ventricular remodelling, but further studies are required to evaluate the independent prognostic value of non-invasive imaging for ischaemia.

8.
bioRxiv ; 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-36909630

ABSTRACT

Sleep supports memory consolidation. However, it is not completely clear how different sleep stages contribute to this process. While rapid eye movement sleep (REM) has traditionally been implicated in the processing of emotionally charged material, recent studies indicate a role for slow wave sleep (SWS) in strengthening emotional memories. Here, to directly examine which sleep stage is primarily involved in emotional memory consolidation, we used targeted memory reactivation (TMR) in REM and SWS during a daytime nap. Contrary to our hypothesis, reactivation of emotional stimuli during REM led to impaired memory. Consistent with this, REM% was correlated with worse recall in the group that took a nap without TMR. Meanwhile, cueing benefit in SWS was strongly correlated with the product of times spent in REM and SWS (SWS-REM product), and reactivation significantly enhanced memory in those with high SWS-REM product. Surprisingly, SWS-REM product was associated with better memory for reactivated items and poorer memory for non-reactivated items, suggesting that sleep both preserved and eliminated emotional memories, depending on whether they were reactivated. Notably, the emotional valence of cued items modulated both sleep spindles and delta/theta power. Finally, we found that emotional memories benefited from TMR more than did neutral ones. Our results suggest that emotional memories decay during REM, unless they are reactivated during prior SWS. Furthermore, we show that active forgetting complements memory consolidation, and both take place across SWS and REM. In addition, our findings expand upon recent evidence indicating a link between sleep spindles and emotional processing.

9.
Nat Commun ; 14(1): 755, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36765047

ABSTRACT

Bile salt hydrolase (BSH) in Bacteroides is considered a potential drug target for obesity-related metabolic diseases, but its involvement in colon tumorigenesis has not been explored. BSH-expressing Bacteroides is found at high abundance in the stools of colorectal cancer (CRC) patients  with overweight and in the feces of a high-fat diet (HFD)-induced CRC mouse model. Colonization of B. fragilis 638R, a strain with low BSH activity, overexpressing a recombinant bsh gene from B. fragilis NCTC9343 strain, results in increased unconjugated bile acids in the colon and accelerated progression of CRC under HFD treatment. In the presence of high BSH activity, the resultant elevation of unconjugated deoxycholic acid and lithocholic acid activates the G-protein-coupled bile acid receptor, resulting in increased ß-catenin-regulated chemokine (C-C motif) ligand 28 (CCL28) expression in colon tumors. Activation of the ß-catenin/CCL28 axis leads to elevated intra-tumoral immunosuppressive CD25+FOXP3+ Treg cells. Blockade of the ß-catenin/CCL28 axis releases the immunosuppression to enhance the intra-tumoral anti-tumor response, which decreases CRC progression under HFD treatment. Pharmacological inhibition of BSH reduces HFD-accelerated CRC progression, coincident with suppression of the ß-catenin/CCL28 pathway. These findings provide insights into the pro-carcinogenetic role of Bacteroides in obesity-related CRC progression and characterize BSH as a potential target for CRC prevention and treatment.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Animals , Mice , Bacteroides/genetics , Bacteroides/metabolism , beta Catenin/metabolism , Amidohydrolases/genetics , Carcinogenesis , Obesity/complications , Bile Acids and Salts , Colorectal Neoplasms/pathology
10.
Health Educ Behav ; 49(6): 1022-1032, 2022 12.
Article in English | MEDLINE | ID: mdl-35856333

ABSTRACT

BACKGROUND: African American women are at a disproportionate HIV risk compared with other U.S. women. Studies show that complex structural and social determinants, rather than individual behaviors, place African American women at greater risk of HIV infection; however, little is known about women's views of what puts them at risk. AIMS: This study sought to comprehend the perceptions of African American women living in low-income housing regarding the factors that influence both their personal sexual health behaviors and use of HIV prevention services. METHODS: We conducted seven focus groups with 48 African American women from 10 public housing communities in a small city in the southeastern United States. We analyzed the focus group transcripts using thematic data analysis to identify salient themes and points of interest related to the study aim. RESULTS: Women identified factors related to the health care system (trustworthiness of the health care system), the external environment (racism, classism, patriarchal structures, and violence/crime), as well as predisposing (health beliefs, stigma, and gender norms), enabling (agency to negotiate gendered power), and need (perceived HIV risk and perceptions of partner characteristics) features of individuals in the population. CONCLUSION: African American women living in public housing are especially vulnerable to HIV infection due to intersectional discrimination based on racism, classism, gender power dynamics, and community conditions. Our findings confirm the need to develop HIV intervention programming addressing intersectional identities of those making up the communities they plan to address, and being informed by those living in the communities they plan to act on.


Subject(s)
HIV Infections , Racism , Black or African American , Female , HIV Infections/epidemiology , HIV Infections/prevention & control , Humans , Poverty , Social Stigma
11.
Cells ; 11(11)2022 06 01.
Article in English | MEDLINE | ID: mdl-35681509

ABSTRACT

Understanding the neurogenic causes of obesity may reveal novel drug targets to counter the obesity crisis and associated sequelae. Here, we investigate whether the deletion of GPR37L1, an astrocyte-specific orphan G protein-coupled receptor, affects whole-body energy homeostasis in mice. We subjected male Gpr37l1-/- mice and littermate wildtype (Gpr37l1+/+, C57BL/6J background) controls to either 12 weeks of high-fat diet (HFD) or chow feeding, or to 1 year of chow diet, with body composition quantified by EchoMRI, glucose handling by glucose tolerance test and metabolic rate by indirect calorimetry. Following an HFD, Gpr37l1-/- mice had similar glucose handling, body weight and fat mass compared with wildtype controls. Interestingly, we observed a significantly elevated respiratory exchange ratio in HFD- and chow-fed Gpr37l1-/- mice during daylight hours. After 1 year of chow feeding, we again saw no differences in glucose and insulin tolerance or body weight between genotypes, nor in energy expenditure or respiratory exchange ratio. However, there was significantly lower fat mass accumulation, and higher ambulatory activity in the Gpr37l1-/- mice during night hours. Overall, these results indicate that while GPR37L1 may play a minor role in whole-body metabolism, it is not a viable clinical target for the treatment of obesity.


Subject(s)
Obesity , Receptors, G-Protein-Coupled , Animals , Body Weight , Glucose/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
12.
PLoS One ; 17(6): e0267166, 2022.
Article in English | MEDLINE | ID: mdl-35737662

ABSTRACT

Micro-anatomical reentry has been identified as a potential driver of atrial fibrillation (AF). In this paper, we introduce a novel computational method which aims to identify which atrial regions are most susceptible to micro-reentry. The approach, which considers the structural basis for micro-reentry only, is based on the premise that the accumulation of electrically insulating interstitial fibrosis can be modelled by simulating percolation-like phenomena on spatial networks. Our results suggest that at high coupling, where micro-reentry is rare, the micro-reentrant substrate is highly clustered in areas where the atrial walls are thin and have convex wall morphology, likely facilitating localised treatment via ablation. However, as transverse connections between fibres are removed, mimicking the accumulation of interstitial fibrosis, the substrate becomes less spatially clustered, and the bias to forming in thin, convex regions of the atria is reduced, possibly restricting the efficacy of localised ablation. Comparing our algorithm on image-based models with and without atrial fibre structure, we find that strong longitudinal fibre coupling can suppress the micro-reentrant substrate, whereas regions with disordered fibre orientations have an enhanced risk of micro-reentry. With further development, these methods may be useful for modelling the temporal development of the fibrotic substrate on an individualised basis.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Fibrosis , Heart Atria , Humans
13.
Elife ; 112022 05 17.
Article in English | MEDLINE | ID: mdl-35578829

ABSTRACT

Motivated by the potential of objective neurophysiological markers to index thalamocortical function in patients with severe psychiatric illnesses, we comprehensively characterized key non-rapid eye movement (NREM) sleep parameters across multiple domains, their interdependencies, and their relationship to waking event-related potentials and symptom severity. In 72 schizophrenia (SCZ) patients and 58 controls, we confirmed a marked reduction in sleep spindle density in SCZ and extended these findings to show that fast and slow spindle properties were largely uncorrelated. We also describe a novel measure of slow oscillation and spindle interaction that was attenuated in SCZ. The main sleep findings were replicated in a demographically distinct sample, and a joint model, based on multiple NREM components, statistically predicted disease status in the replication cohort. Although also altered in patients, auditory event-related potentials elicited during wake were unrelated to NREM metrics. Consistent with a growing literature implicating thalamocortical dysfunction in SCZ, our characterization identifies independent NREM and wake EEG biomarkers that may index distinct aspects of SCZ pathophysiology and point to multiple neural mechanisms underlying disease heterogeneity. This study lays the groundwork for evaluating these neurophysiological markers, individually or in combination, to guide efforts at treatment and prevention as well as identifying individuals most likely to benefit from specific interventions.


Subject(s)
Schizophrenia , Electroencephalography , Humans , Neurophysiology , Polysomnography , Sleep/physiology
14.
Addict Biol ; 27(3): e13169, 2022 05.
Article in English | MEDLINE | ID: mdl-35470553

ABSTRACT

BACKGROUND AND AIMS: Social norms and legality surrounding the use of medical and recreational cannabis are changing rapidly. The prevalence of cannabis use in adolescence is increasing. The aim of this study was to assess any sex-based neurobiological effects of chronically inhaled, vaporised cannabis on adolescent female and male mice. METHODS: Female and male mice were exposed daily to vaporised cannabis (10.3% Δ-9-tetrahydrocannabinol [THC] and 0.05% cannabidiol [CBD]) or placebo from postnatal day 23 to day 51. Following cessation of treatment, mice were examined for changes in brain structure and function using noninvasive multimodal magnetic resonance imaging (MRI). Data from voxel-based morphometry, diffusion weighted imaging and rest state functional connectivity were registered to and analysed with a 3D mouse atlas with 139 brain areas. Following imaging, mice were tested for their preference for a novel object. RESULTS: The effects were sexually dimorphic with females showing a unique distribution and inverse correlation between measures of fractional anisotropy and apparent diffusion coefficient localised to the forebrain and hindbrain. In contrast males displayed significant increased functional coupling with the thalamus, hypothalamus and brainstem reticular activating system as compared with controls. Cannabis males also presented with altered hippocampal coupling and deficits in cognitive function. CONCLUSION: Chronic exposure to inhaled vaporised cannabis had significant effects on brain structure and function in early adulthood corroborating much of the literature. Females presented with changes in grey matter microarchitecture, while males showed altered functional connectivity in hippocampal circuitry and deficits in object recognition.


Subject(s)
Cannabis , Analgesics , Animals , Brain , Cannabinoid Receptor Agonists/pharmacology , Dronabinol/pharmacology , Female , Magnetic Resonance Imaging , Male , Mice
15.
BMC Biol ; 20(1): 1, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34983491

ABSTRACT

BACKGROUND: Across the Metazoa, similar genetic programs are found in the development of analogous, independently evolved, morphological features. The functional significance of this reuse and the underlying mechanisms of co-option remain unclear. Cephalopods have evolved a highly acute visual system with a cup-shaped retina and a novel refractive lens in the anterior, important for a number of sophisticated behaviors including predation, mating, and camouflage. Almost nothing is known about the molecular-genetics of lens development in the cephalopod. RESULTS: Here we identify the co-option of the canonical bilaterian limb patterning program during cephalopod lens development, a functionally unrelated structure. We show radial expression of transcription factors SP6-9/sp1, Dlx/dll, Pbx/exd, Meis/hth, and a Prdl homolog in the squid Doryteuthis pealeii, similar to expression required in Drosophila limb development. We assess the role of Wnt signaling in the cephalopod lens, a positive regulator in the developing Drosophila limb, and find the regulatory relationship reversed, with ectopic Wnt signaling leading to lens loss. CONCLUSION: This regulatory divergence suggests that duplication of SP6-9 in cephalopods may mediate the co-option of the limb patterning program. Thus, our study suggests that this program could perform a more universal developmental function in radial patterning and highlights how canonical genetic programs are repurposed in novel structures.


Subject(s)
Cephalopoda , Animals , Cephalopoda/genetics , Drosophila/genetics , Extremities , Eye , Gene Expression Regulation, Developmental , Organogenesis
16.
Elife ; 112022 01 04.
Article in English | MEDLINE | ID: mdl-34982030

ABSTRACT

Experience governs neurogenesis from radial-glial neural stem cells (RGLs) in the adult hippocampus to support memory. Transcription factors (TFs) in RGLs integrate physiological signals to dictate self-renewal division mode. Whereas asymmetric RGL divisions drive neurogenesis during favorable conditions, symmetric divisions prevent premature neurogenesis while amplifying RGLs to anticipate future neurogenic demands. The identities of TFs regulating RGL symmetric self-renewal, unlike those that regulate RGL asymmetric self-renewal, are not known. Here, we show in mice that the TF Kruppel-like factor 9 (Klf9) is elevated in quiescent RGLs and inducible, deletion of Klf9 promotes RGL activation state. Clonal analysis and longitudinal intravital two-photon imaging directly demonstrate that Klf9 functions as a brake on RGL symmetric self-renewal. In vivo translational profiling of RGLs lacking Klf9 generated a molecular blueprint for RGL symmetric self-renewal that was characterized by upregulation of genetic programs underlying Notch and mitogen signaling, cell cycle, fatty acid oxidation, and lipogenesis. Together, these observations identify Klf9 as a transcriptional regulator of neural stem cell expansion in the adult hippocampus.


In humans and other mammals, a region of the brain known as the hippocampus plays important roles in memory. New experiences guide cells in the hippocampus known as radial-glial neural stem cells (RGLs) to divide to make new neurons and other types of cells involved in forming memories. Each time an RGL divides, it can choose to divide asymmetrically to maintain a copy of itself and make a new cell of another type, or divide symmetrically (a process known as symmetric self-renewal) to produce two RGLs. Symmetric self-renewal helps to restore and replenish the pool of stem cells in the hippocampus that are lost due to injury or age, allowing us to continue making new neurons. Proteins known as transcription factors are believed to control how RGLs divide. Previous studies have identified several transcription factors that regulate the RGLs splitting asymmetrically to make neurons and other cells. But the identities of the transcription factors that regulate symmetric self-renewal in the adult hippocampus have remained elusive. Here, Guo et al. searched for transcription factors that regulate symmetric self-renewal of RGLs in mice. The experiments found that RGLs that are resting and not dividing (referred to as 'quiescent') have higher levels of a transcription factor called Klf9 than RGLs that are actively dividing. Loss of the gene encoding Klf9 triggered quiescent RGLs to start dividing, and further experiments showed that Klf9 directly inhibited symmetric self-renewal. Guo et al. then used an approach called in vivo translational profiling to generate a blueprint that revealed new insights into the molecular processes involved in this symmetric division. These findings pave the way for researchers to develop strategies that may expand the numbers of stem cells in the hippocampus. This could eventually be used to help replenish brain circuits with neurons and improve the memory of individuals with Alzheimer's disease or other conditions that cause memory loss.


Subject(s)
Cell Proliferation , Hippocampus/physiology , Neural Stem Cells/physiology , Transcription, Genetic , Animals , Cell Enlargement , Female , Male , Rats
17.
Front Cell Infect Microbiol ; 11: 759944, 2021.
Article in English | MEDLINE | ID: mdl-34900752

ABSTRACT

Background: Cystic fibrosis is an inherited disease that predisposes to progressive lung damage. Cystic fibrosis patients are particularly prone to developing pulmonary infections. Fungal species are commonly isolated in lower airway samples from patients with cystic fibrosis. Fungal spores are prevalent in the air. Methods: We performed environmental air sampling surveillance at the Manchester Adult Cystic Fibrosis Centre, UK (MACFC) over a 14-month period to assess fungal growth inside and outside the CF center. Results: Airborne counts of fungal spores peaked from May to October, both in outdoor and indoor samples. Collection of meteorological data allowed us to correlate fungal presence in the air with elevated temperatures and low wind speeds. Additionally, we demonstrated patient rooms containing windows had elevated fungal counts compared to rooms not directly connected to the outdoors. Conclusions: This study suggests that airborne Aspergillus fumigatus spores were more abundant during the summer months of the survey period, which appeared to be driven by increased temperatures and lower wind speeds. Indoor counts directly correlated to outdoor A. fumigatus levels and were elevated in patient rooms that were directly connected to the outdoor environment via an openable window designed for ventilation purposes. Further studies are required to determine the clinical implications of these findings for cystic fibrosis patients who are predisposed to Aspergillus related diseases, and in particular whether there is seasonal influence on incidence of Aspergillus related conditions and if screening for such complications such be increased during summer months and precautions intensified for those with a known history of Aspergillus related disease.


Subject(s)
Cystic Fibrosis , Adult , Air Microbiology , Cystic Fibrosis/complications , Cystic Fibrosis/epidemiology , Fungi , Humans , Meteorological Concepts , Spores, Fungal
18.
Am J Physiol Heart Circ Physiol ; 321(4): H807-H817, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34533400

ABSTRACT

Multiple mouse lines lacking the orphan G protein-coupled receptor, GPR37L1, have elicited disparate cardiovascular phenotypes. The first Gpr37l1 knockout mice study to be published reported a marked elevation in systolic blood pressure (SBP; ∼60 mmHg), revealing a potential therapeutic opportunity. The phenotype differed from our own independently generated knockout line, where male mice exhibited equivalent baseline blood pressure to wild type. Here, we attempted to reproduce the first study by characterizing the cardiovascular phenotype of both the original knockout and transgenic lines alongside a C57BL/6J control line, using the same method of blood pressure measurement. The present study supports the findings from our independently developed Gpr37l1 knockout line, finding that SBP and diastolic blood pressure (DBP) are not different in the original Gpr37l1 knockout male mice (SBP: 130.9 ± 5.3 mmHg; DBP: 90.7 ± 3.0 mmHg) compared with C57BL/6J mice (SBP: 123.1 ± 4.1 mmHg; DBP: 87.0 ± 2.7 mmHg). Instead, we attribute the apparent hypertension of the knockout line originally described to comparison with a seemingly hypotensive transgenic line (SBP 103.7 ± 5.0 mmHg; DBP 71.9 ± 3.7 mmHg). Additionally, we quantified myocardial GPR37L1 transcript in humans, which was suggested to be downregulated in cardiovascular disease. We found that GPR37L1 has very low native transcript levels in human myocardium and that expression is not different in tissue samples from patients with heart failure compared with sex-matched healthy control tissue. These findings indicate that cardiac GPR37L1 expression is unlikely to contribute to the pathophysiology of human heart failure.NEW & NOTEWORTHY This study characterizes systolic blood pressure (SBP) in a Gpr37l1 knockout mouse line, which was previously reported to have ∼60 mmHg higher SBP compared with a transgenic line. We observed only a ∼27 mmHg SBP difference between the lines. However, when compared with C57BL/6J mice, knockout mice showed no difference in SBP. We also investigated GPR37L1 mRNA abundance in human hearts and observed no difference between healthy and failing heart samples.


Subject(s)
Blood Pressure , Heart Failure/metabolism , Hypertension/metabolism , Receptors, G-Protein-Coupled/metabolism , Adult , Animals , Case-Control Studies , Female , Genotype , Heart Failure/genetics , Heart Failure/physiopathology , Humans , Hypertension/genetics , Hypertension/physiopathology , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Phenotype , Receptors, G-Protein-Coupled/genetics , Species Specificity
19.
Microbiol Mol Biol Rev ; 85(2)2021 05 19.
Article in English | MEDLINE | ID: mdl-33980587

ABSTRACT

The Borrelia spp. are tick-borne pathogenic spirochetes that include the agents of Lyme disease and relapsing fever. As part of their life cycle, the spirochetes traffic between the tick vector and the vertebrate host, which requires significant physiological changes and remodeling of their outer membranes and proteome. This crucial proteome resculpting is carried out by a diverse set of proteases, adaptor proteins, and related chaperones. Despite its small genome, Borrelia burgdorferi has dedicated a large percentage of its genome to proteolysis, including a full complement of ATP-dependent proteases. Energy-driven proteolysis appears to be an important physiological feature of this dual-life-cycle bacterium. The proteolytic arsenal of Borrelia is strategically deployed for disposal of proteins no longer required as they move from one stage to another or are transferred from one host to another. Likewise, the Borrelia spp. are systemic organisms that need to break down and move through host tissues and barriers, and so their unique proteolytic resources, both endogenous and borrowed, make movement more feasible. Both the Lyme disease and relapsing fever Borrelia spp. bind plasminogen as well as numerous components of the mammalian plasminogen-activating system. This recruitment capacity endows the spirochetes with a borrowed proteolytic competency that can lead to increased invasiveness.


Subject(s)
Borrelia burgdorferi/pathogenicity , Animals , Bacterial Proteins/metabolism , Borrelia burgdorferi/metabolism , Humans , Lyme Disease/microbiology , Plasminogen/metabolism , Proteolysis , Relapsing Fever/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...